
Prep
rin

t

Detecting Similarity in Student Multi-procedure
Programs using Program Structure

Full Paper

SACLA 2019

c©The authors/SACLA

Karen Bradshaw[0000−0003−3979−5675] and Vongai Chindeka

Dept. of Computer Science, Rhodes University, South Africa
k.bradshaw@ru.ac.za

Abstract. Plagiarism is prevalent in most undergraduate programming
courses, including those where more advanced programming is taught.
Typical strategies used to avoid detection include changing variable names
and adding empty spaces or comments to the code. Although these
changes affect the visual components of the source code, the underly-
ing structure of the code remains the same. This similarity in structure
can indicate that plagiarism has taken place.
A similarity detection system has been developed to detect the similar-
ity in the structure of two given programs. The system works in two
phases, the first phase parses the source code and creates a syntax tree,
representing the syntactical structure for each of the programs. The sec-
ond phase takes as inputs two program syntax trees and applies vari-
ous comparison algorithms to detect their similarity. The result of the
comparison allows the system to report a result from one of four similar-
ity categories: identical structure, isomorphic structure, containing many
structural similarities, and containing few structural similarities. Empir-
ical tests on example programs show that the prototype implementation
is effective in detecting plagiarism in source code, although in some cases
manual checking is needed to confirm the plagiarism.

Keywords: Plagiarism Detection, Code Structure, Student Code.

1 Introduction

Plagiarism occurs when one person tries to pass off someone else’s work as his/her
own [1]. This can mean copying word-for-word or copying phrases or smaller
parts of the work, which if done without quoting and/or citing the originator
of the work, results in plagiarism. This is a common occurrence in academic
environments. In undergraduate programming courses, once one student obtains
a solution to an assigned programming task, it is often replicated by other stu-
dents.

Assignments for more advanced programming courses typically involve more
complex programs that can be constructed in a variety of ways. Students in these

Prep
rin

t

2

course should be aware of a wider variety of programming constructs available
in the programming language being used. Therefore, if there is similarity in the
structure of large segments of code it can be a sign that plagiarism has taken
place.

Plagiarism of code often involves techniques that try to hide the plagiarism,
such as various code obfuscation techniques. Students commonly resort to simple
techniques, such as statement reordering, instruction splitting or aggregation,
loop unwinding or introducing white spaces and comments [2]. Although these
changes affect the appearance of the source code, they do not alter the syntactic
structure thereof.

A functional plagiarism detection system is a possible solution to prevent-
ing plagiarism in an academic environment by encouraging students to avoid
the penalties attached to plagiarism [3]. The main obstacle, however, in detect-
ing plagiarism in an undergraduate programming course is the sheer volume of
student programs that need to be assessed. Thus, the probability of detecting
similar programs is reduced with larger class sizes and more complex programs.

Plagiarism checkers for text are more common than those for source code,
which means that plagiarism in computer programs is often done manually.
Manual checking can be tricked by drastically changing the visual appearance
of the program; this does not alter the structure of the program, but makes it
more difficult for a human to detect.

The aim of this research is to generate a similarity detection system that
bases its similarity comparison solely on the static structure of the programs
being compared without any preprocessing of the source code or dynamic anal-
ysis thereof. Such a system can be useful in the detection of plagiarism in an
academic setting and specifically in more advanced programming courses with
more complex programming assignments. Such a plagiarism detection system
would not be useful in introductory courses, where the structure of the simple
programs tends to be much the same even without the occurrence of plagiarism.
The effectiveness of the similarity detection system in detecting plagiarism is
also investigated.

The rest of this paper is organized as follows: Section 2 introduces and dis-
cusses related studies in plagiarism detection and tree comparison. Section 3.1
gives a high level overview of the similarity detection system developed. Section 4
explains the various algorithms used in the comparison of the program structure,
while Section 5 discusses the results of simple test cases. Section 6 concludes the
paper and also mentions future work to improve the similarity detector.

2 Related Work

2.1 Plagiarism Detection

Most existing similarity detection systems for source code use either a metrics-
driven or syntax-based approach to determine the degree of similarity between
programs [1]. The metrics used in the former approach can come from a software

Prep
rin

t

3

engineering perspective, such as the number of each data structure type used or
the cyclomatic complexity of the program’s control flow. Cyclomatic complexity
is a metric based on the number of linearly independent paths in the program’s
control flow. Metrics can also come from a linguistic or technical aspect such
as variable names, indentations and other layout conventions used as well as
the number of comments in the code and their quality. These types of metrics
can help determine a student’s program authoring style. The linguistics centered
metrics tend to be more useful for smaller and simpler programs such as those
written in introductory programming courses.

The methods that are used by systems using a syntax-based approach, can
be categorised into static source code comparison, static executable code com-
parison, dynamic control flow based, dynamic API based methods as well as
dynamic value based methods. JPlag, YAP3 and MOSS are three well-known
systems that detect similarities in source code by using a static source code com-
parison. MOSS (Measure of Software Similarity)1 is a system developed in 1994
that uses fingerprinting to detect similarity in programs by using a fingerprinting
algorithm called winnowing [4]. This algorithm makes detection faster, but at
the expense of sacrificing some detection capabilities.

YAP3 [5] works in two phases. In the first phase it removes comments and
string constants, changes all letters to lowercase, maps statements that do the
same things, reorders the functions in the code to their calling orders by ex-
panding them to their full token sequences and removes all the tokens that are
not in the lexicon of the language used. The second phase is the comparison
phase, which uses an algorithm that caters for the scrambling of independent
segments of code called the Running-Karp-Rabin Greedy-String-Tiling (RKR-
GST) algorithm. This is a similar algorithm to that used by the UNIX utility
“sdiff”.

In JPlag [6], the first phase scans and parses the program and converts it into
token strings based on the program structures. In the second phase the tokens
of the two programs are compared using the ”Greedy String Tiling” algorithm.
Token strings are compared according to the following rules: any token from
one program must match with only one token in the other program, substrings
are matched without relating to their positions (so that changing the positions
of code segments is ineffective) and the matching of long substrings is more
indicative than the matching of short substrings so they are favoured more.

The JPlag system is a web-based application so the result is given as a set of
HTML pages providing an in-depth description of the similarity. Assuming a pair
of programs as input, the system provides results (in the form of a histogram) for
each possible match found in the files. Percentages less than 5% do not indicate
plagiarism, while a similarity of 100% shows definite plagiarism. Any percentage
in between requires further manual investigation to determine if it is plagiarism.

Systems like MOSS, YAP3 and JPlag were designed to work with a number
of languages and generally provide good results. However, small changes in the

1 https://theory.stanford.edu/ aiken/moss/

Prep
rin

t

4

source code such as reordering statements in the case of JPlag and slightly more
complex reorderings in the case of MOSS, cannot be detected.

CSPLAG [7] is a solution that attempts to eliminate these shortcomings by
using both syntax and semantic knowledge to detect copied code. CSPLAG how-
ever, focuses only on languages compiled within the .NET framework. Compar-
isons of the source code, the abstract syntax trees, as well as the .NET produced
intermediate code are carried out to produce results that are superior to those
of JPlag and MOSS in detecting a variety of different plagiarism scenarios.

2.2 Tree Comparison Studies

A tree is a special form of a graph, with only one edge connecting any two nodes,
that is, without cycles or loops [8]. Tree structures are typically used to represent
hierarchical data. A tree is considered rooted if it has a node that is selected to
be a root node and is ordered if the children of each node are in a specific order,
for example, increasing values of the nodes from left to right.

Isomorphism is a useful concept in comparing trees; two trees are isomorphic
if the nodes in one tree can be mapped to the nodes in the other tree [9]. This
means that an isomorphic tree can be obtained by switching around the children
of the nodes of another tree. The two trees shown in Fig. 1 are isomorphic.

Fig. 1. Isomorphic trees.

An algorithm to determine whether two trees are isomorphic was developed
by Aho et al. [9]. The algorithm applies to trees that are rooted and unordered.
In the algorithm, an integer is allocated to each node, beginning at the leaf nodes
of the trees, in such a way that the trees are isomorphic if and only if the same
integer is assigned to the roots of the trees. This algorithm works in O(n) time
for n nodes.

Itokawa et al. [10] proposed an algorithm for tree pattern matching using
succinct data structures. Succinct data structures are a representation of data

Prep
rin

t

5

that takes a minimal amount of space but remains usable. This representation
(of which there are many forms) is an efficient encoding that does not require
decoding so that it may be used in query operations. The succinct representation
for trees defined in the algorithm proposed by Itokawa et al. uses matching pairs
of parentheses to represent a node’s information. This depth-first unary degree
sequence (DFUDS) representation is a succinct representation for ordered trees.
For a tree with n nodes, the representation is a sequence of 2 ∗ n opening and
closing parentheses, where an opening parenthesis is emitted when a node is
first encountered, and the closing parenthesis is emitted when returning to this
node after the depth first traversal of the respective subtree. Moreover, given
the DFUDS representation of two trees p and t, the algorithm returns true if a
substitution θ of one tree, called pθ, exists so that t and pθ are isomorphic.

Comparison of trees is often done using methods that calculate the maximum
agreement sub-tree of the two trees being compared, as shown in Fig. 2. The
maximum agreement sub-tree is a tree that includes all possible matching nodes
of the two trees based on common ancestors [11]. The authors presented an algo-
rithm for comparing trees that they claim is faster than pre-existing algorithms.
This algorithm applies to graphs that have nodes that are labelled. The way
that the graphs are labelled is not limited to a specific way for the algorithm to
work.

Fig. 2. Graph comparison, taken from [12].

Prep
rin

t

6

3 Proposed Similarity Detection System

3.1 Design Overview

For the prototype implementation of the proposed detection system, an exper-
imental language Parva [13] with a small set of programming constructs, was
used as the source language. Similar to YAP and JPlag, the proposed system
comprises two phases, but unlike these systems, syntax trees are used as the
representation of the source programs.

In the first phase, a parser translates the given input programs into their
respective syntax trees, which are subsequently input to the second phase, where
various comparison algorithms are applied to determine the similarity score of
the input programs.

To implement the first phase, a Parva parser, written in C#, was developed
using a compiler generator, Coco/R2. The output from this parser is a con-
crete syntax tree, which is serialised and stored in eXtensible Markup Language
(XML) format. XML was chosen due to its suitability for use in phase two of
the similarity detection system, as well as for ease of viewing the tree struc-
tures during manual validation of the similarity of the test programs. Although
there are C# libraries that implement XML serialising and deserialising, the
proposed system uses a custom implementation, which allowed a more flexible
and accurate representation of the hierarchical format of the tree structures.

The similarity detection phase takes in the XML representations of the Parva
source code files and deserialises these into the Tree<string> data structure
form consisting of a collection of nodes of type TreeNode. Each node has a value
field of a generic type, a property indicating the level in the tree where the node
is located, a pointer to its parent node and finally, a list of its children nodes.

During the deserialisation, a new node is created by providing the value of
the node as well as the node’s parent node. This creates a level 0 node with the
given value and parent, as well as an empty list of children. Functionality for
adding a child to the node, using the AddChild(TreeNode<T> child) method,
is provided for. The tree can also be represented in a string form using the
ToString() method, which does a depth first traversal of the tree rooted at the
current node and returns a string containing the values of the node itself, its
parent node and its children nodes, for each node that is encountered during the
traversal. This string form is a version of succinct representation that is useful
because simple string handing operations can replace handling bulky tree data
structures during the comparison.

The resulting trees are compared using three algorithms: a brute force al-
gorithm, an isomorphism algorithm as well as an algorithm based on succinct
representation. An overview of the similarity detection phase is illustrated in
Fig. 3.

2 http://www.ssw.uni-linz.ac.at/coco/

Prep
rin

t

7

Fig. 3. Similarity detection phase.

3.2 Example Program

1 void Main ()
2 { const votingAge = 18 ; }

Listing 1.1. Minimal Parva program.

The minimal example Parva code in Listing 1.1 contains a main function with
only one statement, a constant variable declaration. The string representation
of the parse tree generated by parsing this declaration, shown in Listing 1.2,
gives a list of the nodes of the tree iterated through in a depth-first order. Each
node is represented by the level and value of the node followed by the value of
the parent node as well as values of the children nodes if they exist. The XML
representation of the parse tree is illustrated in Fig. 4.

1 0 Node Value : Program Parent Value : n u l l Chi ldren :
FuncOrGlobalVarDeclarations

2 1 Node Value : FuncOrGlobalVarDeclarations Parent Value :
Program Chi ldren : Type I d e n t i f i e r Function

3 2 Node Value : Type Parent Value : FuncOrGlobalVarDeclarations
Chi ldren : Void

4 3 Node Value : Void Parent Value : Type Chi ldren :
5 2 Node Value : I d e n t i f i e r Parent Value :

FuncOrGlobalVarDeclarations Chi ldren :
6 2 Node Value : Function Parent Value :

FuncOrGlobalVarDeclarations Chi ldren : FormalParameters
Body

Prep
rin

t

8

7 3 Node Value : FormalParameters Parent Value : Function
Chi ldren :

8 3 Node Value : Body Parent Value : Function Chi ldren :
Statement Statement Statement Statement Statement
Statement Statement Statement

9 4 Node Value : Statement Parent Value : Body Chi ldren :
ConstDec larat ions

10 5 Node Value : ConstDec larat ions Parent Value : Statement
Chi ldren : OneConst

11 6 Node Value : OneConst Parent Value : ConstDec larat ions
Chi ldren : I d e n t i f i e r AssignOp Constant

12 7 Node Value : I d e n t i f i e r Parent Value : OneConst Chi ldren :
13 7 Node Value : AssignOp Parent Value : OneConst Chi ldren :
14 7 Node Value : Constant Parent Value : OneConst Chi ldren :

IntegerConstant
15 8 Node Value : IntegerConstant Parent Value : Constant Chi ldren

:

Listing 1.2. String representation of the syntax tree for the minimal Parva program.

Fig. 4. XML representation of part of the parse tree for minimal Parva program.

4 Comparison Algorithms

The report on the similarity output by the similarity detection phase involves
one of four categories: category 1 (identical), category 2 (isomorphic), category 3

Prep
rin

t

9

(contains many similarities) and category 4 (contains few similarities). The three
chosen comparison algorithms give results that classify the program similarity
into these categories.

In addition to the basic string representation, a succinct representation was
also created for use in some of the comparison algorithms. As discussed in Section
2.2, a succinct data structure represents the data in a way that takes up minimal
space, but allowing operations on the data to be possible without the requirement
of decoding the data. The succinct representation that was chosen is a string that
represents each node as a pair of opening and closing parentheses preceded by
the value of the node and the succinct representations of the children nodes,
enclosed in the parentheses. A depth-first traversal is done through the tree,
starting at the root. When a leaf node is reached, its representation is passed
back up the tree resulting in the encoded version of the tree. For the example
tree shown in Fig. 5, the resulting encoding is: 1(2(4(5())6())7()8()).

Fig. 5. Example showing the succinct representation used.

The succinct string encoder recursively does a depth-first traversal of the tree
returning the encoding of each node. The result is a string, which means that nor-
mal string operations can be applied to the representation. This representation
takes up less space, compared with the basic string and XML representations of
the syntax tree.

4.1 Brute Force Comparison

The brute force algorithm compares the basic string representations of the trees
rooted at the given nodes; it returns true if the strings are identical and false

Prep
rin

t

10

if they are not. The string representation is obtained using a method that re-
cursively does a depth-first traversal of the tree rooted at the current node. The
depth-first traversal means that if the resulting strings are identical, the trees
that are traversed are identical. A true result output by this algorithm gives a
category 1 result.

4.2 Isomorphism

The succinct string encoder first sorts the children of a node before recursively
traversing them. This is done so that the rearranging of statements, which results
in the rearranging of nodes in the tree, is ineffective in obscuring the similarity.
This sorting is done using a method that compares two nodes by checking if the
basic string representing the current node is alphabetically less than, equal to
or greater than the string representation of the next node. This means that the
children of a node are sorted according to the alphabetical order of the respective
string representations.

What is achieved by sorting the children before traversing through them, is
that the order of the nodes in the tree is inconsequential. Trees are isomorphic
if one tree can be obtained by switching the order of siblings, that is, nodes at
the same level. By removing order as a factor, the isomorphism of the trees can
be exposed. Given the root nodes of two trees being checked for isomorphic sim-
ilarity, the algorithm encodes both the trees and checks if the resulting trees are
identical. Classifying the trees as being isomorphic means that the two trees con-
tain the same elements structurally and if they do not return true for the brute
force algorithm it means that the statements of one program were rearranged to
produce the other program.

4.3 Individual Node Comparison

If the programs being compared have not been declared identical or isomor-
phic, additional comparisons using the succinct representation are carried out.
Consider two syntax trees temp0 and temp1, where temp0 has fewer nodes than
temp1. First temp1 is encoded and for each node of temp0, the encoding of temp1
is checked to see if it contains an encoding of the node. If the encoding of one
tree contains the encoding of a node in the other tree it means that a similar
node has been found in the trees. The system keeps track of all the similar nodes
and if the node is a global level node, that is, either a global variable declaration
or function declaration, this is also noted.

Based on the percentage of similar nodes that are found, a category 3 or
category 4 result is given. A category 3 result is given for similarity greater that
60% (more than 60% of nodes are similar) for either tree. A category 4 result
is given for similarity less than 60%. For either category, if a global level node
is similar it is reported as such. The threshold percentage between categories 3
and 4 was decided arbitrarily, purely to distinguish the two categories.

Prep
rin

t

11

5 Experimental Results

The measure of similarity that is used to give the result, is based on four cate-
gories as mentioned in Section 4. Listing 1.3 shows an example of the result pro-
duced by programs that are structurally the same and return true for the brute
force algorithm described in Section 4.1. The Parva translator disregards white
spaces and comments. When the syntax tree is generated by the parser, identifier
names, string literals, character literals and other values are disregarded. This
means that making simple visual changes, such as changing identifier names and
string literals as well as adding or removing comments or white spaces, does not
trick the similarity detection system.

1 Result
2 Category 1 :
3 Programs are i d e n t i c a l
4 S i m i l a r i t y i s 100%

Listing 1.3. Output showing a category 1 result.

Listing 1.4 shows an example of the result produced by trees that are iso-
morphic. This means that the obfuscation technique of rearranging statements
does not prevent the similarity check from working correctly.

1 Result
2 Category 2 :
3 Programs are the same ; statements have been switched around
4 S i m i l a r i t y i s 100%

Listing 1.4. Output showing a category 2 result.

Additional comparisons using the succinct representation results in either a
category 3 result shown in Listing 1.5 or a category 4 result shown in Listing 1.6.
Category 3 and 4 results also record the existence of a global level node that is
structurally the same, if present.

1 Result
2 Category 3 :
3 The programs conta in l a r g e /many s i m i l a r par t s
4 Program 1 (the f i r s t argument) conta in s : 85.06% s i m i l a r nodes
5 Program 2 (the second argument) conta in s : 52.85% s i m i l a r nodes

Listing 1.5. Output showing a category 3 result.

1 Result
2 Category 4 :
3 The programs conta in few s i m i l a r par t s
4 At l e a s t one g l o b a l l e v e l element (func t i on o f v a r i a b l e) i s

the same
5 Program 1 (the f i r s t argument) conta in s : 32.51% s i m i l a r nodes
6 Program 2 (the second argument) conta in s : 53.70% s i m i l a r nodes

Listing 1.6. Output showing a category 4 result.

Prep
rin

t

12

5.1 Test Cases

Experiments using three source code files were used to validate the results given
by the system. The first file used is Test0.pav shown in Listing 1.7. The second
file, Test1.pav shown in Listing 1.8, was produced by copying the code in the
first program and applying obfuscation techniques that rely on semantic meaning
such as, changing the type of loop used, expanding variable declarations and
assignments and using a chain of redundant functions to call a function. The
third file, Test2.pav shown in Listing 1.10, was obtained by applying obfuscation
techniques that affect the visual appearance of the code, such as changing white
spaces and comments, changing variable names and shuffling statements around
or hiding blocks of copied code in other functions.

1 void voter ()
2 { i n t votingAge = 18 ;
3 wr i t eL ine (” Voting age = ” , votingAge) ;
4 }
5

6 void voter1 () {
7 // voter . pav
8 // Simple voter example
9 voter () ; // Write vot ing age

10 const votingAge = 18 ;
11 i n t age , e l i g i b l e = 0 , t o t a l = 0 ;
12 bool a l l E l i g i b l e = true ;
13 i n t [] vo t e r s = new i n t [1 0 0] ;
14 read (age) ;
15 whi le (age > 0) {
16 bool canVote = age > votingAge ;
17 a l l E l i g i b l e = a l l E l i g i b l e && canVote ;
18

19 i f (canVote) {
20 vo t e r s [e l i g i b l e] = age ;
21 e l i g i b l e = e l i g i b l e + 1 ;
22 t o t a l = t o t a l + vot e r s [e l i g i b l e − 1] ;
23 }
24 read (age) ;
25 }
26 i f (a l l E l i g i b l e) wr i t e (”Everyone was above vot ing age ”) ;
27 wr i t e (e l i g i b l e , ” vo t e r s . Average age i s ” , t o t a l /

e l i g i b l e , ”\n”) ;
28 }
29

30 void Main ()
31 { voter1 () ; }

Listing 1.7. Test0.pav source code.

Prep
rin

t

13

1 void voter ()
2 { wr i t eL ine (” Voting age = ” , 18) ; }
3

4 void voter1 () {
5 // voter . pav
6 // Simple voter example
7 voter () ; // Write vot ing age
8 i n t votingAge = 18 ;
9 i n t age , e l i g i b l e = 0 , t o t a l = 0 ;

10 bool a l l E l i g i b l e ;
11 a l l E l i g i b l e = true ;
12 i n t [] vo t e r s ;
13 vo t e r s = new i n t [1 0 0] ;
14 read (age) ;
15 loop {
16 bool canVote = age > votingAge ;
17 a l l E l i g i b l e = a l l E l i g i b l e && canVote ;
18 i f (canVote) {
19 vo t e r s [e l i g i b l e] = age ;
20 e l i g i b l e = e l i g i b l e + 1 ;
21 t o t a l = t o t a l + vot e r s [e l i g i b l e − 1] ;
22 }
23 read (age) ;
24 i f (age < 0) break ;
25 }
26 i f (a l l E l i g i b l e) wr i t e (”Everyone was above vot ing age ”) ;
27 wr i t e (e l i g i b l e , ” vo t e r s . Average age i s ” , t o t a l /

e l i g i b l e , ”\n”) ;
28 }
29

30 void c a l l i n g ()
31 { voter1 () ; }
32

33 void c a l l i n g 1 ()
34 { c a l l i n g () ; }
35

36 void c a l l i n g 2 ()
37 { c a l l i n g 1 () ; }
38

39 void Main ()
40 { c a l l i n g () ; }

Listing 1.8. Test1.pav source code.

The output given when comparing Test0.pav and Test1.pav is shown in
Listing 1.9. Test0 has 90.05% similar nodes while Test1 has 82.27% of its nodes
similar.

Prep
rin

t

14

1 Result
2 Category 3 :
3 The programs conta in l a r g e /many s i m i l a r par t s
4 At l e a s t one g l o b a l l e v e l element (func t i on o f v a r i a b l e) i s

the same
5 Program 1 (the f i r s t argument) conta in s : 90.05% s i m i l a r nodes
6 Program 2 (the second argument) conta in s : 82.27% s i m i l a r nodes

Listing 1.9. Result of comparing Test0.pav and Test1.pav.

1 void va l idVote r s () {
2 // va l idVote r s
3 // Simple voter example
4 // D e s c r i p t i o n s
5 const AgeOfVoting = 18 ;
6 i n t age , e l i g i b l e C o u n t = 0 , t o t a l = 0 ;
7 bool a l l E l i g i b l e = true ;
8 i n t [] vo t e r s = new i n t [1 0 0] ;
9 // D e s c r i p t i o n s

10 wr i t eL ine (” Voting age = ” , AgeOfVoting) ; //Output vot ing
age

11 read (age) ;
12 whi le (age > 0) { // D e s c r i p t i o n s
13 bool canVote = age > AgeOfVoting ;
14 a l l E l i g i b l e = a l l E l i g i b l e && canVote ;
15 i f (canVote) { // D e s c r i p t i o n s
16 vo t e r s [e l i g i b l e C o u n t] = age ;
17 // D e s c r i p t i o n s
18 e l i g i b l e C o u n t = e l i g i b l e C o u n t + 1 ;
19 // D e s c r i p t i o n s
20 t o t a l = t o t a l + vot e r s [e l i g i b l e C o u n t − 1] ;
21 }
22 read (age) ;
23 }
24 // D e s c r i p t i o n s
25 i f (a l l E l i g i b l e) wr i t e (”Everyone was above vot ing age ”) ;
26 // D e s c r i p t i o n s
27 wr i t e (e l i g i b l eCount , ” vo t e r s . Average age i s ” , t o t a l /

e l i g ib l eCount , ”\n”) ;
28 }
29

30 void Main ()
31 { va l idVote r s () ; }

Listing 1.10. Test2.pav source code.

Listing 1.11 shows the results when comparing Test0.pav and Test2.pav.
Test0 has 89.05% similar nodes while Test2 has 96.24% of its nodes the same.
The average of the percentages given indicates that the similarity is higher in
the Test0 and Test2 comparison than the Test0 and Test1 one.

Prep
rin

t

15

1 Result
2 Category 3 :
3 The programs conta in l a r g e /many s i m i l a r par t s
4 At l e a s t one g l o b a l l e v e l element (func t i on o f v a r i a b l e) i s

the same
5 Program 1 (the f i r s t argument) conta in s : 89.05% s i m i l a r nodes
6 Program 2 (the second argument) conta in s : 96.24% s i m i l a r nodes

Listing 1.11. Result of comparing Test0.pav and Test2.pav.

5.2 Discussion of the Results

As in the case for JPlag [6], a result of 100% similarity such as that given in
categories 1 and 2 is indicative of plagiarism whereas low percentages of similarity
show the absence of plagiarism. For results in between, however, a manual check
is required to confirm if plagiarism has taken place. Category 3 and 4 results
therefore require manual intervention.

The test cases compare the effect of semantic-based and visual-based ob-
fuscation techniques on the system. The semantic-based techniques seem to be
detected by the system but it is possible that some of the similar nodes are
detected because of the minimal number of constructs available in the Parva
programming language, or due to the simplicity of the example used. The same
statements are often chosen because of lack of choice, resulting in unintentional
similarity. The percentage of similarity is generally higher for the visual-based
techniques; this is most likely because semantic-based techniques change the
structure of the program and require the inclusion of semantic meaning in the
process of detecting similarity.

6 Conclusion

The aim of this research was to produce a prototype similarity detection system
that compares programs for similarity using only the structure of the programs.
The system consists of a parsing phase, which outputs a syntax tree represented
as XML, and a comparison phase. The XML tree representation is converted
into both a string and a succinct representation for use in the second phase.

The usefulness of this prototype system in detecting plagiarism was tested
using simple, yet realistic code examples. Results for all four categories of pla-
giarism were correctly given. Thus, the system can be used both to detect 100%
similarity as well as to narrow down the submissions from a large group of stu-
dents that need to be manually checked.

Future work involves extensive testing on larger code samples and samples
taken from real programming languages, as well as optimising the comparison,
serialising and encoding algorithms to make the system more efficient. In addi-
tion, comparisons with other plagiarism detection systems need to be completed.

Prep
rin

t

16

References

1. Paris, M.: Source code and text plagiarism detection strategies. In: 4th Annual
Conference of the LTSN Centre for Information and Computer Sciences. pp. 74–
78. LTSN Centre for Information and Computer Sciences (August 2003)

2. Zhang, F., Wu, D., Liu, P., Zhu, S.: Program logic based software plagiarism detec-
tion. In: IEEE 25th International Symposium on Software Reliability Engineering
(ISSRE). pp. 66–77. IEEE (2014)

3. Whale, G.: Identification of program similarity in large populations. The Computer
Journal 33(2), 140–146 (January 1990). https://doi.org/10.1093/comjnl/33.2.140

4. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: Local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data. pp. 76–85. SIGMOD ’03, ACM, New York,
NY, USA (2003). https://doi.org/10.1145/872757.872770

5. Wise, M.J.: YAP3: Improved detection of similarities in computer
program and other texts. SIGCSE Bulletin 28(1), 130–134 (1996).
https://doi.org/10.1145/236462.236525

6. Prechelt, L., Malpohl, G., Phillippsen, M.: JPlag: Finding plagiarisms among a set
of programs. Tech. rep., Karlsruhe Institute of Technology (2000)

7. Puflović, D., Gligorijević, M.F., Stoimenov, L.: CSPlag: A source code plagiarism
detection using syntax trees and intermediate language. In: Proceedings of the 52nd
International Scientific Conference on Information, Communication and Energy
Systems and Technologies (ICEST 2017). pp. 102–105 (2017)

8. Wilson, R.J., Watkins, J.J.: Graphs: an Introductory Approach: a First Course in
Discrete Mathematics. John Wiley & Sons Inc (1990)

9. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

10. Itokawa, Y., Wada, M., Ishii, T., Uchida, T.: Tree pattern matching algorithm using
a succinct data structure. In: Proceedings of the International MultiConference of
Engineers and Computer Scientists. vol. 1, pp. 206–211 (2011)

11. Kao, M.Y., Lam, T.W., Sung, W.K., Ting, H.F.: An even faster
and more unifying algorithm for comparing trees via unbalanced bi-
partite matchings. Journal of Algorithms 40(2), 212–233 (2001).
https://doi.org/https://doi.org/10.1006/jagm.2001.1163

12. Zhang, S., Wang, J.T.: Discovering frequent agreement subtrees from phylogenetic
data. IEEE Transactions on Knowledge and Data Engineering 20(1), 68–82 (2008)

13. Terry, P.: Compiling with C# and Java. Pearson Education (2005)

